MATH 579 Exam 4 Solutions

1. How many subsets of [30] are larger than their complements?
$\binom{30}{15}$ of the subsets have its complement of the same size, while the remaining ones, of which there are $2^{30}-\binom{30}{15}$, have its complement of a different size. Half of these are smaller, half are bigger, so the answer is $\frac{2^{30}-\binom{30}{15}}{2}=459,312,152$.
2. Prove that $\sum_{k}(-4)^{k}\binom{100}{k}=3^{100}$.

Using the binomial theorem we get $\sum_{k}(-4)^{k}\binom{100}{k} 1^{100-k}=(-4+1)^{100}=(-3)^{100}=3^{100}$.
3. How many northeastern lattice paths are there from $(0,0)$ to $(15,10)$ that do not pass through $(7,8)$?

There are $\binom{25}{10}=3,268,760$ such paths. To pass through $(7,8)$ one must first go from $(0,0)$ to $(7,8)$, then from $(7,8)$ to $(15,10)$. This can be done in $\binom{15}{7}\binom{10}{8}=289,575$ ways. Hence the number of paths that DON'T pass through $(7,8)$ is the difference $2,979,185$.
4. Suppose k, n are integers satisfying $0<k<n$. Prove that $\binom{n}{k-1}\binom{n}{k+1} \leq\binom{ n}{k}\binom{n}{k}$.

With the restrictions given, all four binomial coefficients are nonzero, so the problem is equivalent to proving that $f(n, k) \leq 1$, for $f(n, k)=\frac{\binom{n}{k-1}\binom{n}{k+1}}{\binom{n}{k}\binom{n}{k}}$. We rewrite as $f(n, k)=$ $\frac{(n)_{k-1}}{(n)_{k}} \frac{(n)_{k+1}}{(n)_{k}} \frac{k!}{(k-1)!} \frac{k!}{(k+1)!}=\frac{1}{n-k+1} \frac{n-k}{1} \frac{k}{1} \frac{1}{k+1}=\frac{n-k}{n-k+1} \frac{k}{k+1}$, a product of two fractions each less than 1 , hence itself less than 1.
5. For $m, n \in \mathbb{N}_{0}$, prove that $\sum_{0 \leq k \leq n}(k)_{m}=\frac{1}{m+1}(n+1)_{m+1}$.

We begin with $\sum_{0 \leq k \leq n}\binom{k}{m}=\sum_{m \leq k \leq n}\binom{k}{m}=\binom{n+1}{m+1}$, which we can prove combinatorially, by induction, or recall as Thm. 4.5 in the text. Since $m \geq 0$, we may rewrite as $\sum_{0 \leq k \leq n} \frac{(k)_{m}}{m!}=\frac{(n+1)_{m+1}}{(m+1)!}$. Multiply both sides by $m!$ to get the desired result.
Note the similarity between this statement and the familiar calculus statement
$\int_{0}^{n+1} x^{m} d x=\left.\frac{1}{m+1} x^{m+1}\right|_{0} ^{n+1}=\frac{1}{m+1}(n+1)^{m+1}$. This is no coincidence, as this problem may also be solved using the fundamental theorem of difference calculus, a discrete analog of the fundamental theorem of differential calculus that you learned in your MATH 150 course.

